深度:人工智能和机器学习如何改变苹果历史?
|
苹果近期的一笔收购是来自西雅图的Turi。有报道称,苹果斥资2亿美元收购了这家公司。Turi开发堪比谷歌 TensorFlow的机器学习工具包。外界猜测,苹果将会以类似目的去利用Turi,无论是在公司内部还是面向开发者。苹果高管没有对此置评。库伊表 示:“从技术和人才角度来看,他们有些东西非常适合苹果。”未来一两年内,我们可能会看到重大变革。苹果2013年收购了创业公司Cue,该公司的预测技 术将会被用在Siri中。 无论人才来自何处,苹果的人工智能基础设施都能帮他开发产品和功能。而以往这是不可能的。这改变了苹果的产品路线图。席勒表示:“在苹果,炫酷创意永远没有尽头。由于机器学习的帮助,以往被我们否定的想法现在可以着手去做。这将会影响我们未来产品决策的流程。” 其中的案例之一是搭配iPad Pro使用的Apple P encil触控笔。在开发这一触控笔的过程中,苹果发现,当人们在设备上书写时,手掌总会碰到触摸屏,影响书写的准确 性。利用机器学习技术,屏幕传感器可以以非常高的准确率识别滑动、触摸,以及触控笔输入的不同之处。费德里西表示:“如果性能无法做到坚如磐石,那么就不 适合书写,而Pencil就不是一款优秀的产品。”现在,如果你喜欢使用Apple Pencil,那么要感谢机器学习技术。 或许,衡量苹果机器学习研究进展的最佳方式正是苹果在人工智能领域最重要的一笔收购:Siri。Siri最初来自美国国 防部高级研究计划局(DARPA)在智能助手领域的一个项目。随后,部分科学家成立了一家公司,利用这项技术开发了一款应用。2010年,史蒂夫·乔布斯 (Steve Jobs)说服这家公司的创始人把公司卖给苹果,并将Siri集成至苹果的操作系统。在2011年10月推出iPhone 4s时,苹果重点推介了Siri。用户需要按下iPhone的Home按钮,或是对着手机说“Hey Siri”,才能将Siri激活。(这项功能本身就用到了机器学习技术,令iPhone既可以收听语音命令,又不至于耗电量太大。)不过,Siri的应用 不止于此。目前,Siri被集成在了非常保密的Apple Brain中。 关于这方面的核心产品,苹果提出了四大要素:语音识别(理解用户正在说什么)、自然语言理解(知道用户想表达的意思)、执行(完成某一请求),以及回应(用语音回复用户)。他表示:“机器学习以非常重要的方式对所有这些环节产生了影响。” Siri高级开发负责人汤姆·格拉伯(Tom Gruber)在最初的收购中加入了苹果(他的联合创始人于2011年离职)。他表示,在苹果将神经网络技术应用于Siri之前,其规模化的用户就带来了 大量数据,而这成为了随后训练神经网络的关键。“乔布斯说过,你们要在一夜之间从一项试点、一款应用拓展至1亿用户,同时没有任何测试项目。突然之间,你 就能得到大量用户。他们会告诉你,用户对你应用的反馈是什么。这是第一次革命。随后,神经网络技术被集成进来。”
Siri高级开发负责人汤姆·格拉伯(上)和Siri团队负责人埃里克斯·阿赛洛 实际上,在处理语音识别的过程中,Siri转向神经网络技术是由于多名人工智能专家的到来。这其中包括语音团队的负责人 埃里克斯·阿赛洛(Alex Acero)。阿赛洛早在90年代初就在苹果从事语音识别的研究,而随后还曾供职于微软研究院。他表示:“我喜欢从事这方面工作,并发表过很多论文。然而 在Siri推出时,我感觉,如果希望将这些深度神经网络变为现实,那么这是个机会。这将不再只是几百个人会阅读的研究成果,而是被数千万人使用。”换句话 说,他就是苹果期望的科学家类型:优先关注研发产品,而不是发表论文。 机器学习非常显著的、从多个方面对Siri 造成了冲击 在3年前阿赛洛加入苹果时,Siri的语音技术仍然从第三方授权而来,而这样的局面急需改变。费德里西指出,这是苹果多 次采取的模式:“如果有迹象表明,某一技术领域对于我们提供优秀的产品非常关键,那么我们将进行内部开发,提供我们想要的体验。如果想让某一技术变得优 秀,那么我们需要拥有这一技术,并展开内部创新。语音识别是个很好的例子,我们利用外部技术去起步。” 这一团队开始训练神经网络,取代Siri最初采用的技术。阿赛洛表示:“我们拥有有史以来最庞大的GPU(图形处理单 元)阵列,而我们向其中输入了大量数据。”在2014年7月上线之后,结果证明他们的工作行之有效。他指出:“对于所有语言,错误率下降了一半,而在很多 情况下甚至超过一半。这主要是由于深度学习技术,以及我们采取的优化方式。这不仅是对算法本身,也是对整个端到端产品。” “端到端”的说法很形象。苹果并不是第一家将深度神经网络用于语音识别的公司,但苹果指出,通过控制整个系统,该公司获 得了优势。阿赛洛表示,由于苹果自行设计芯片,因此他可以直接接触芯片设计团队和固件开发工程师,从而最大化神经网络的性能。Siri团队的需求甚至影响 了iPhone的整体设计。 费德里西表示:“不仅仅是芯片,这也影响到我们要在设备中集成几个麦克风,麦克风的位置,如何优化硬件、麦克风,以及用于声音处理的软件。这些都需要考虑。相对于只开发软件的公司,这是令人难以置信的优势。” 另一项优势:在被用于某款产品时,苹果的神经网络可以成为其他应用的核心技术。例如,帮助Siri了解用户的机器学习技术可以成为处理语音输入的引擎。而由于Siri的存在,用户会发现,如果使用语音输入而不是软键盘,那么他们的消息和电子邮件将会更连贯。 关于Siri,库伊提到的第二大要素是自然语言理解。从2014年11月开始,Siri就利用机器学习技术去理解用户的 意图,并在一年后发布了基于深度学习的版本。机器学习技术优化了用户体验,尤其是用户可以更灵活地去表述命令。库伊掏出自己的iPhone,激活了 Siri。他对着手机说:“通过Square Cash向简恩转账20美元。”手机屏幕上显示了他的命令。随后,他用略微不同的语言再次发出这个命令。“向我老婆发20美元。”结果仍是同样。 苹果会说,如果没有Siri的进步,那么当前一代支持复杂语音控制的Apple TV无法成为现实。早前版本的Siri要求用户以固定方式说出语音命令。而目前基于深度学习的Siri不仅能从大量的电影和歌曲中找出特定的择,还能处理 一些模糊的概念:推荐几部汤姆·汉克斯的优秀惊悚片。费德里西指出:“在这项技术得到应用之前,你无法做到这一点。” 今年秋季,苹果将发布iOS 10,而Siri语音技术的最后一个环节也将被机器学习所改变。深度神经网络将取代苹果从第三方授权而来的技术。之前,Siri语音来自预先录制的声音数 据库,每个句子实际上都由单词拼接在一起。格拉伯表示,机器学习将会使Siri语音更流畅,更像是真人在说话。 阿赛洛进行了展示。最初是我们熟悉的Siri语音,这样的声音充满了机器感。随后,他又展示了新版Siri语音,而这一版本可以流畅地说出:“嘿,我能为你做些什么?”那么是什么带来了不同?阿赛洛表示:“就是深度学习。” 尽管这看起来只是一些小细节,但更自然的Siri语音可以带来很大改变。格拉伯表示:“如果语音质量更高,那么人们就会更信任Siri所说的内容。更好的语音能吸引更多用户,促使用户更多地使用。因此,这将带来收益递增效应。” 随着苹果将Siri开放给其他开发者,用户使用Siri的意愿以及机器学习带来的优化对苹果而言将变得更重要。实际上, 关注苹果的评论人认为,苹果早就应该将Siri开放。许多人指出,苹果的第三方Siri合作伙伴只有数十家,落后于亚马逊Alexa。后者宣称,外部开发 者给Alexa带来了超过1000种技能。苹果则表示,这样的对比没有意义,因为亚马逊用户需要用特定命令去调用这些“技能”。Siri可以用更自然的语 言去集成SquareCash和Uber等服务。(苹果的另一家竞争对手,即Siri创始团队开发的新版语音助手Viv也将集成第三方服务,不过Viv的 发布日期尚未确定。) 与此同时,苹果报告称,Siri的优化带来了改变。通过常见的搜索请求,用户可以发现新功能,得到更多信息。库伊表示: “请求数量正越来越多。我认为,我们需要更好地传播我们所做的工作。例如,我喜欢体育。你可以问Siri,它认为哪支球队将赢得比赛,而你可以得到答案。 连我都不知道,我们已经能做到这一点。” 在接纳机器学习技术的过程中,苹果面临的最大问题或许在于,如何在保护用户隐私的情况下取得成功。苹果会将用户信息加 密,而其他所有人,包括苹果律师,都无法获得这些数据(美国FBI(联邦调查局)在拥有搜查令的情况下同样拿不到这些数据)。此外,苹果宣布不会因为广告 目的而收集用户信息。 尽管从用户的角度来看这样做很好,但这不利于吸引人工智能人才。一名现供职于人工智能公司的苹果前员工表示:“机器学习专家想要获得的就是数据。考虑到对隐私保护的立场,苹果实际上对你有所限制。你可以辩论这样做是否正确,但苹果也因此被认为不是真正的人工智能发烧友。” 苹果高管则不赞同这样的观点。他们表示,不需要将用户信息保存至云计算平台,甚至也不必保存用户行为的实例,机器学习系统就能获得所需的全部数据。费德里西表示:“这是一种错误的观点。尊重用户隐私对我们来说是一种好形象。我们将向行业的其他公司展示我们要怎么去做。” 我们已经找到了获取我们需要的数据,同时又能保护用户隐私的方法。 这其中包括两方面的问题。其一是利用机器学习系统去处理个人信息。如果用户信息通过神经网络去处理,那么这些信息将会被如何利用?其二则涉及到收集信息去训练神经网络,识别用户行为。如果不去收集用户信息,你要如何才能做到这点? 苹果表示,对于这两方面问题,该公司都已有答案。库伊表示:“有些人认为,我们的人工智能做不到这点,因为我们不掌握数据。但我们已经找到方式去获得所需的数据,同时仍然保护用户隐私。这是底线。” 借助对软件和硬件的控制,苹果可以解决第一个问题,即在神经网络处理的过程中保护用户的个人偏好和其他隐私信息。简单来 说,最私密的信息将会被保存在Apple Brain中。费德里西表示:“对于最敏感的信息,机器学习发生在设备本地。”具体的例子包括应用推荐,即最左侧屏幕上显示的常用应用图标。在理想情况 下,这应当是用户接下来想要打开的应用。这样的预测基于一系列因素,而其中大部分都与他人无关,而只与用户自己有关。这样的预测效果很好,费德里西表示, 在90%的情况下,用户会从这些预测中找到所需的信息。苹果直接从手机内完成了计算。 (编辑:网站开发网_安阳站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |



