变频冷机在超低负载下如何安全又节能运行?
|
然后,工程师还在自控系统上加载了一个控制程序,用于控制冷机的启停,避开冷机喘振点:冷机自身设定供水温度8度,当冷机冷冻水回水温度达到16度时,自控系统远程启动冷机;冷机开始以8度的供水温度产冷,当冷机回水温度低于10度,自控系统远程关闭冷机(冷冻水泵一直保持运转)。任何时候都保持冷机进出水温差在2度以上的负荷,以防止冷机因负荷太低(比如进出水温差1度)而发生喘振。 测试中,冷机启动后,会以内部设定的供水温度目标值(比如8度)进行自身输入功率的调节。在回水温度较高时(比如16度),冷机运行功率会非常大,“运行电流百分比”参数为90%以上。约半小时过后,整个管道水温就由16度下降至低于10度,冷机因进出水温差减小,开始减载。此时,冷机减载过程中会伴随着轻微的喘振,当电流百分比减少至30%以下时,冷机频率进一步下降,喘振也越来越厉害。为了不让冷机喘振,自控系统在检测冷机回水温度到达10度后,先行关停冷机。然后让系统水温再自由回升至16度,再远程启动冷机。
图4冷机频繁启停
图5管路中水温的波动曲线情况 经测试,这种工作方式虽然可以解决冷机轻载喘振问题及起到节能效果,但由于冷机启停周期时间太短(3小时),导致每天需要频繁起停冷机(每天8次),频繁启停对冷机这样的大型设备来说也是非常不利。 如何把冷机一天的起停次数减少到合理范围?(比如一天1-2次),甚至一直不停。这需要冷机在开启过程中,缓慢输出冷量,延迟冷机运行时间。工程师开始对冷机的内部厂家参数进行深入研究。 经研究,发现冷机内部有一项设置参数比较重要:现场电流百分比限制。它指的是冷机运行过程中,控制冷机最大的运行电流比不得超过某一设定值。如果电流比一直控制在较低值,也就能控制冷机的产冷量输出。
图6采用了“限流”后的冷机输出功率 这项参数给了工程师新的启发:为了让冷机运行时间更久,减少启停次数,必须限制冷机输出,这就需要对冷机现场电流百分比设定做限制。工程师通过对这项参数进行反复调整,在确保冷机不出现喘振情况下,最终得到了以下最优的运行方案调整: ①设定“冷机现场运行电流百分比”上限不超过30%; ②设定冷机供水温度6度,目的不是让冷机达到供水温度6度,而是为了让冷机运行百分比提到最高,达到条件①所说的上限。 在完成上述两设定后,我们得到冷机在当前负载下的最终运行曲线:采用了“限流”后的冷机输出功率比较恒定,降低至200KW。
图7采用了“限流”后的冷机供水温度曲线 成果提炼 通过这条曲线,我们得到以下分析结果—— 冷机启动前,整个管道水温16度;冷机启动后,一直以最低的电流百分比输出(30%)运行,产冷量控制在较低值。此时的冷量只够产生3度的温降(回水16度,出水13度)。 对于末端IT负载来说,供回水温差在1—1.5度,说明冷机还是有冷量富余,故整体水温会缓慢下降。 (编辑:网站开发网_安阳站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |





